Der Geometrie-Künstler Kurt Moritz aus Pratteln/Schweiz brachte mir Zeichnungen, die mit Zirkel und Farben kunstvoll angefertigt waren. Er hat mich damit inspiriert, mehr über den Energie-Speicher-Mechanismus bei der Quadratierung der Geschwindigkeiten nachzudenken. Ausgangspunkt war ursprünglich ein schönes Spiralenbild
Danach tauchte er näher in die Thematik Verdichtung ein und es entstand ein pfeilförmiges Bild aus Kreisen (Bild bitte vergrößert betrachten mit Rechtsklick für neues Fenster, denn die quadrierten Strahlabstände und ihre Quersummen sind alle eingetragen):
Man sieht ein dichtes buntes Kreise-Raster, und die Kreise sind verschieden ausgemalt. Es hatte sich ein mysteriöses fraktales Muster gebildet. Eng aneinander, ohne Überschneidungen, füllen sie ein Wabenmuster, genau wie es die Bienen bauen. Jeder Kreis mit Radius 1 an der Position einer Bienenlarve.
Nun werden per Pythagoras die Abstände vom oberen Hauptzentrum berechnet. Waagerecht ergeben sich Zeilen von Kreisen, sie haben immer den Abstand zwei, das ist der Kreisdurchmesser bei Berührung der Kreise. Senkrecht haben zwei Kreise-Lagen den Abstand Wurzel aus Drei, weil sich zwar nicht die Waben überschneiden, aber die Kreise überschneiden sich wegen der Zeilen-Versetzung von Länge Eins. Nur immer die übernächsten Lagen liegen genau übereinander.
Beim Quadrieren am Pythagoras verschwindet die Wurzel aus Drei und so bleiben die quadrierten Katheten ganzzahlig. Die Länge der Hypothenuse wird quadriert gelassen, also auch immer ganzzahlig, und in jeden Kreis wird die Quadratzahl des Abstandes vom Zentrum eingetragen. Und diese Zahl wird dann mit modulo 9 verkürzt, durch Quersummenbildung. Die unterschiedlichen Quersummen bekommen je eine andere Farbe. Die Modulao-Reste 2, 5, 8, 6 tauchen interessanterweise nicht auf.
So weit ist alles nachvollziehbar. Die Quadratzahlen stehen am Ort des Radiuszeigers, dem einfachen Strahlabstand zur Null, eigentlich bei der Quadratwurzel der eingetragenen Zahl.
Die farbliche Markierung der Quersummen zeigt Zentren mit Quersumme 9 und darum herum gleichfarbige Ringe (Quersumme 4) oder mit 2 Farben (Quersumme 7 und 1). Ein zweiter Ring umgibt den ersten mit der Quersumme 3.
Die Ringe liegen in der Bildebene, also senkrecht zum Strahl. Und genau DAS halten wir für bedeutsam, wenn es auch mathematisch völlig nachvollziehbar ist. Oder weil es das ist. Wir glauben, dass uns hier etwas Grundlegendes geoffenbart wird. Die Interpretationen sind vielfältig und beginnen gerade erst.
Die einfachste Vorstellung für Modulo9, die nichts mit dem Rundenzeiger im Neuneck (Zeiger-Sprünge zu jeweils 40 Grad, wie man sich die Quersumme oft vorstellt) zu tun hat:
Als Kreisquerschnitt mit innerem Hohlraum, der auf diese Weise entsteht, passt es noch besser zu Wirbelströmungen.
(PSE=Periodensystem der Elemente,
AGZ=Aggregatzustand)
Erste Interpretationen von mir (über seine eigenen wird noch gesondert berichtet)
Wenn ich die Quersummen 1, 4, 7 einer Strömung zuordne (Vortex-Mathematik), bleiben 9 und 3 für Sog übrig.
Die Neun kann man beliebig vervielfachen, sie bleibt als Quersumme immer Neun, hat keine Bewegung, wird deswegen dem Sog in der Hauptachse zugeordnet. In allen seinen Bildern ist die Quersumme Neun dunkelviolett gemalt.
Neun Teilchen tauchen zweimal im Wasserstoff auf, dem leichtesten Element. Und jedweder Stoff hat eine durch 18=2*9 teilbare Anu-Anzahl. Warum?
Für die Sog-Ausgleichsflüsse in physischer Materie wird sich für Wasserstoff vermutlich astraler Wasserstoff eignen, für schwere Elemente vermutlich physischer Wasserstoff.
Die Muster erinnern auch an die horizontale Anbindung der Chakren an die senkrechte Wirbel-Hauptachse. Mit dieser Hypothese, als Anwendung im Organischen, hat sich Kurt Moritz jahrelang beschäftigt.
Ich habe mir seitdem folgende Fragen gestellt:
Wie kann es sein, dass Modulo-Rechnungen das Abbild von Wirbelschichten in der Draufsicht ergeben? Sind Aura-Strömungen nicht nur zerlegte (18er) Materie, wie bisher angenommen, sondern geladene Teilchenströme aus Anu, die weder lichtartig noch materieartig sind? Sind sie vielleicht nur all die Reste der 18er-Gruppen vom Kern (Körper)? Die PSE-Materie ist offenbar aus 18er-Modulen aufgebaut, das wissen wir aus der Okkulten Chemie.
Nehmen wir an, die Strahllänge ist die Geschwindigkeit eines Subteilchens im Phasenwinkel phi, der etwas über den Konuswinkel des Strömungsverlaufes aussagt. Es befindet sich im kondensierten Zustand. Bevor es da hin kam, hatte es den höheren Wert (v mal v), und gab alle überschüssigen Neunergruppen in den Sogbereich ab, die es in sich trug. Der Punkt mit Quersumme 9 markiert die Drehachse des neuen Subwirbels, ein Wurmloch, in das die überschüssige Energie als gebundene Teilchenmenge versenkt wurde.
Würde sich das Teilchen wieder herauslösen, könnte es die Position (v mal v) zurückbekommen, aber der Ort, wo es vorher war, konnte vorher beliebig viele Neunergruppen bereitstellen/herausziehen aus dem Inneren des Wirbels, dem Sogbereich. Das ist die Stelle, die das Quadrieren energetisch erst erlaubt, denn irgendwo muss die Beschleunigung dafür herkommen. Ich spreche von harmonischen Gleichgewichten, also spontanen AGZ-Umwandlungen, weder endogen noch exogen induziert.
Allgemeiner Hinweis: Findet das Verdoppeln auf dem Kreisumfang statt, wie eine Phasenwinkelverdopplung, könnte das mathematisch als eine Quadrierung vom Wurzelsysten her zu sehen sein. Das Wurzelsystem ist dann der kondensierte AGZ, also in der AGZ-Tabelle nach unten muss der Phasenwinkel halbiert werden und aus einem (v hoch 2) wird v durch Division mit v, das ist einheitsmäßig die Multiplikation mit s/m, von Stufe zu Stufe. Nach oben geht es wieder via Multiplikation mit m/s. Die benötigte Beschleunigung wird dem hohen Eigenspin der Kondensate entnommen, wie aus einer aufgezogenen Uhrfeder oder einem per Zahnrad-Kette hochgezogenem Gewicht. Die Kondensat-Subwirbel bleiben dabei erhalten, befreien sich aber aus der festen Anbindung.
Hinweis Radienverdopplung auf Spiralbahn:
Beim Verdoppeln des Radius R per Spiralbahn-Umlauf beträgt die Weglänge 9 mal R, nicht 2 mal 2Pi (=12,56637) mal R wie gemittelt ein Kreis am doppelten Radius oder 2 mal 6 mal R (=12) wie beim Sechseck, sondern nur 9 mal der kleinere Ausgangsradius R.
Auch damit könnte modulo 9 zusammenhängen und die Quersumme sowie das Zehnerzahlensystem fovourisieren. Wiederholte Umläufe werden dann auf einen einzigen reduziert, projiziert, normiert.
Nach Radien-Halbierung steht der Phasenwinkel-Zeiger wieder am Ausgangspunkt, nachdem die Länge 9R eingerollt wurde. Hat die Spirillenbildung etwas mit der Aussendung von Neunergruppen zu tun? Wenn dabei Subwirbel entstehen bzw. frei werden, ist automatisch die Neunergruppe bevorzugt. Das Anu ist auch als eine Sonne zu betrachten – der Kern eines viel größeren Systems, nur seine Wendeschleife.
Beispiel Häther im Planetensystem und Sonne als Wendeschleife:
Jeder Umlauf nach innen hat ein eigenes Dichte-Spirillenverhältnis, und muss die „Länge 9“ als Spirillen in sich hinein emittieren, um am Schluss, auf der Oberfläche des Sonnen-Anu, die gleiche Form zu haben (raum&zeit147). C.W.Leadbeater beschreibt zwar die Entstehung des Anu mit bestimmten ersten Spiralen, aber er geht nicht auf die vorherige Bildung des linsenförmigen Anu-Umfeldes ein, das die Ursache für deren große Abstände untereinander bildet.
Beim Tornado dreht auch erst der gesamte kilometergroße Wetterwirbel, bevor sich im Zentrum der sichtbare Schlauch zum Boden senkt. Leadbeater war auf die Beobachtung des Kern-Schlauches eingestimmt. Unser tastbarer Körper ist auch nur der Kern, aber das Ganze, das Wesen, umfasst noch viele wirbelnde Auraschichten, ohne die der Kern zerfallen würde.
Noch einmal:
Die Halbierung der Radien (immer minus Merkurbahnradius) pro Umlauf der Hätherflüsse im Sonnensystem enden an der Merkurbahn. (Bis zur Sonnenoberfläche scheint sich die Faltungs-Regel zu ändern.) Die erzwungenen Drehbeschleunigungen trotz Verdichtung des Umfeldes müssten zur Spirillenbildung auf der Stromlinie führen. Der Bahndrehimpuls wird in Richtung Sonne immer mehr zu Spin, dem Eigendrehimpuls.
Genauso ist es qualitativ im Mäander. Die Drehradienverkleinerung beginnt dort kurz nach der Steilkurve, und nach der Furt wird der Radius wieder größer, die „Wasser-Spirillen“ entspannen sich. Analog ist das mechanisch als Drehpendel bekannt. (Wir können froh sein, dass die Planetenbewegung das nicht auch mitmacht und uns jährlich zwei mechanische Polsprünge beschert. Zum Glück hat der Vorgang bei festen Planeten so viel Hysterese, dass das Umklappen ganz ausbleibt. Die Anu in den Elementen des PSE scheinen das gleiche Glück zu haben. Sonst hätte Leadbeater vor lauter Flipperei nichts erkennen können.)
Die Radien-Verdopplungen der solaren Hätherströmungen auf dem Weg von der Sonne durch das Planetensystem finden vermutlich so statt, dass sich die Spirillen wieder entrollen. Ob dann die ganzen Neunergruppen, insbesondere die globaldrehenden schweren Protonen, in der Sonne zurückbleiben, als eingesammeltes Spirillen-Kondensat, oder vollständig wieder neu entstehen, wie vermutlich die antiglobaldrehenden „Elekronen“ (aller Welten), kann ich derzeit nicht sagen. Die herausgehende Spirale wird mit jedem Umlauf immer feinstofflicher und hat weniger Spirillen. Deswegen gehen 10 Umrundungen mit 10 Dimensionserhöhungen einher. Wenn es Stufen sind, wäre Saturn bereits im Astralen, aber dann würden wir ihn nicht sehen können. Dass wir die äußeren Planeten trotzdem sehen können, hängt mit der Spirillenbildung im Lichttransport-Medium zusammen. Wir empfangen von dort nur hereinfließenden Häther, und genau dieser verdichtet sich pro Umlauf wieder, bis er hier ist. So wird er dann sichtbar.
Fortsetzung:
https://vivavortex.wordpress.com/2023/05/02/aura-und-parallelwelten/